サークルで活動するには参加が必要です。
「サークルに参加する」ボタンをクリックしてください。
※参加を制限しているサークルもあります。
-
from: 生成門さん
2014年02月13日 08時28分08秒
icon
アインシュタインのローレン変換とSのメービウス変換のどっちに軍配は上がるか?
アインシュタインのローレン変換とSのメービウス変換のどっちに軍配は上がるか?
<心霊科学=S科学>
電子の速度が光速になるとローレンツ変換では無限大になるはずが、Sのメービウス変換では体積が0になることが導かれました。
導き方は力Fを差分式にして鏡面変換を利用して次のように求めました。
F=m {(ΔΔx)/(Δt)^2}
=m{(ΔΔx)/(1/t)^2}
=m(t^2)(ΔΔx)
=-m(t^2){1/(x^3+x)}
空間の変換式:
xが小さいとき:x=–X(1–v/c)
xが大きいとき:x^3=–(X^3){1–(v/c)}
v=cのときは、いずれもx=0,x^3=0となります。アインシュタインの要であるローレンツ変換:x=X/√{1–(v/c)^2}ではx=無限大となってしまいます。どっちが正しいのでしょうか。
癌細胞に光速の電子を照射させ治療するという画期的な光速電子放射線治療AWGが存在しているということは、少なくとも無限大はないということですね。何故なら電子が無限大の線に引き延ばされると細胞への影響は全くないですよね。更にアインシュタインの欠点は体積の式が存在しないことです。あなたはどっちに軍配を上げますか。同様に体積が0になるということはどういう意味があるのでしょうか。-
サークルで活動するには参加が必要です。
「サークルに参加する」ボタンをクリックしてください。
※参加を制限しているサークルもあります。 - 0
-
サークルで活動するには参加が必要です。
「サークルに参加する」ボタンをクリックしてください。
※参加を制限しているサークルもあります。 - 0
icon拍手者リスト
-
コメント: 全0件